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Let P be the polynomial of degree less than or equal to n which is the best
approximation to a given f in C[-1, 1]. An approximation to P can be
computed by choosing a finite subset F of [-1, 1] and calculating the
polynomial Pi-' of degree less than or equal to n, which best approximates f
on F. Then if IFI (see Eq. (3)) is small, estimates show that the discretization
error, as measured by liP - Prll, is also small 15, pp. 84-100; 20, pp. 33-47;
221. A classical choice for the set F of m points is

lcos((2j - 1)7!/2m): j = 1,2,... , ml (1)

15, p. 931·
A natural formulation of this discretization problem, developed below,

leads to a specific criterion for the choice of points in F. It will be shown
that, by this criterion, the choice of points in (I) is asymptotically best, but
not best.

Consider a strictly monotone function ¢, mapping an interval Ia, b1 onto
r-1, 11, which is continuously differentiable. Then

d(x, y) = Ir '(x) - r l(y)1 (2)

defines a metric on [-1, 11 which is equivalent to the Euclidean metric. This
function 0 will play the same role as the function cos x on [0, 7!] in the
classical treatment [5]. If the bound on If I on [a, b] is M, the mean value
theorem shows that d(x, y) >(11M) Ix - yl. If M > 1, we can, with no loss
of essential generality, consider, instead of ¢J, the function ¢J(xIM) on
[aM, bM]; and so we will suppose that

d(x, y) >Ix - yl.
29
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For a subset F of I-I, 11, set

IFI = sup inf jd(x, y): yin F, x in I-I, Ill.
x y

(3 )

For any set G not 1-1, II, let

Ilgll(; = supll g(x)l: x in Gi
x

and reserve II gil, without the subscript, for the C1- I, II norm. As usuaL 7[1/

denotes all the polynomials of degree less than or equal to n, and wI is the
modulus of continunity of f

THEOREM 1. For fin C1-I. 11, let P be the polynomial in 7[1/ which besl
approximates f (on I-I, 11), and,for a given subset F of 1-1. 1I, lei PI be
the polynomial in 7[11 which besl approximales f on F. Then

IIP-PIII(:cIWA6)+21Ifli ~n6 61
1 K

II

(4)

whenever IFI (: 6 < 1/K n' The constant C depends on£v on f and n, nol on (f!

or F. The constant K n is the norm of the derivative D when restricted to lhe
subspace 7[n 0 ¢ of all functions of the form Q 0 Iii, in nn:

K =IIDI . !In 7'[11,'0 i •
(.5 )

Proof The proof is similar to 15, pp.91-921. By the strong unicity
theorem 15, p. 80 I,

liP - Pili (: (l/y)(llf- Pili -IJ - PII), (6)

where i' is a constant which depends on f and n, but not on F (or (f!). If
inequality (4) holds whenever IF! < 6, then it also holds for IFI = (), so
suppose that IFI < 6. There is a point x in 1- L I[ at which
If(x) - PI (.'1')1 = Ilf - PI!I, and a point y in F with d(x, .1') < 6. Write

Ilf - Pill (: if(x) - f(Y)1 + IPI(y) - Pr(x)1 + If(y) - Prtr)l· (7)

Since ¢ has been normalized so that d(x, y) ?- Ix - .1' I, the first term in (7)
is bounded above by wA6). To bound the second term in (7), note that the
function PI 0 ¢ belongs to the subspace 7[n 0 ¢ on which the derivative D has
norm K n • From the mean value theorem.

IPI(y) - Pr(x)1 = IPr(¢(¢ I(x))) - Pr(¢;(r I(Y)))I

= K,.(IIPr 0 IiJ Illa.hl) I@ 1(.'1') -I/J 1(.1')i

< K n IIPr I16.
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Then II/-PFII-II/-PII ~ 11/-PFII-II/-PIiF ~ II/-PFII-II/-PFIIF
~ III - PFII - I/(Y) - PF(y)!, and from inequality (7) and the bounds on its
first two terms,

III - PFII-III - PII ~ wj6) + K" 611 PFII· (8)

Now to bound IIPFII: consider a polynomial Q in 7[" which attains its norm
on [-I, I] at a point x, and choose Y in F with d(x, y) < 6. Then II QII ~
IQ(x) - Q(y)1 + I Q(y)l, and

IIQII ~ I(Q 0 ¢)(¢-I(X)) - (Q 0 ¢)(rl(Y))1 + IIQIIF' (9)

As above, the first term in (9) is bounded by K" 611 QII. If 6 is small enough
to have 15K" < 1, it follows that

I
IIQII ~ l-K 611QIIF'

"
For Q = PF, II QIIF ~ IIPF- IIIF +II/IIF ~ 211/11F ~ 211J11, and

IIPFII ~ 211/11/(1 - K"J).

Thus

III - Pili-III -PII ~ w~J) + 1~;/ J 11111,
"

and the inequality of the theorem follows from Eq. (6).

( 10)

(11 )

Q.E.D.

THEOREM 2. Let r, 0 < r < 1, be given, and let F" be a subset of [-1, 1I
lor which IF" I K" ~ 1 - r. For any f in C[-1, 11, let P" be the polynomial in
7[" which best approximates I on F". Then II/-P"II ~ (1 + 2/r)E,,(J),
where, as usual, E,,(J) = d(f, 7[,,).

Proof The proof is analogous to [5, p. 93]. Q.E.D.

The function ¢, which has been fixed in Theorems 1 and 2, will now be
varied and inequality (4) will be used to derive a criterion for choosing ¢.
Say that ¢ is optimal (with respect to inequality (4)) if, given [a, b I and the
number m of points in the finite subset F of [-1, 1 j, ¢ minimizes the right­
hand side of (4). Note that only the number m of points in F is given; F is
otherwise unspecified.

If F contains m points {YI"'" Ym}, then for a given ¢, IFI has its minimum
value of (b - a)/2m for the choice

640/4I/1J

Yj = ¢(a + (2j - 1)(b - a)/2m), j= 1,2,... , m. (12)



32 ROBERT WHITLEY

This minimum value of iFI, for a given Ia, b I, is independent of 1/). Therefore,
minimizing KJ) by the optimal choice of (j), and thereby minimizing the
right-hand side of inequality (4) as well as obtaining the best constant I' in
Theorem 2, is achieved by minimizing KII' When the optimal ¢ has been
found, Eq. (12) indicates the corresponding optimal choice for the m points
in F.

A function B II is a bound for the derivative on Till if

for all P in 7[11' -1 < x < l. (13 )

For a continuous bound B
II

, define

.X

C,,(x) = I B"U) dt. (14 )

The best bound B,;, which is continuous 123, p. 1621, IS given by

B,;(x) = sUP1IP'(x)l: Pin Ti", PI!:( If,
I'

and the corresponding

For a discussion of B;: and related matters see 13. 231.

THEOREM 3. Let B
II

be a continuous bound on the dericatil'e on 7[11' and
for a gil'en interl'al Ia, b). define

Then

(15 )

and for

:( C,,( I )/(b - a), (16 )

( 17)

infIIDI~"li = liD
" "

= C;(1 )!(b -- a). (J 8)

Proof For P in Till with IIPII:( L ID(pul/J)(x)j=IP'((j)(x))(j)'(x)l~

IB,,(I/J(x))¢'(x)l=iDCII(¢(x))'. The function CIl0(fJ maps la.hl
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monotonically onto [0, Cn(1)]; the choice of increasing ¢ which minimizes
sUPx{IDCn(¢(x»l: -1:::;; x:::;; 11 is given by (15) and (16) follows.

From the definition of the best bound B;, given ¢(x) in (-1,1) there is a
P in nn of norm one with

ID(P 0 ¢)(x)1 = IB;(¢(x» ¢'(x)1 = IDC;(¢(x»l·

Therefore,

IIDI"no<t>11 = {sup IDC;(¢(x»l: -1:::;; x:::;; 11·
x

As above, this norm is minimized by the function ¢; of Eq. (17). Q.E.D.

Equation (18) gives a formula for K n = inf<t> IIDI"no<t>ll. The best bound on
the derivative on n + I-dimensional subspaces, d n + I = infw{11 D 1M II: M a
subspace in the domain of D, dim M = n + 11, is discussed in [241 where it
is shown that d n + I = n. From the asymptotic results given below (with
[a,b]= [-I, I])Kn /dn + 1 ~rc/2.

Given an interval [a, b1, K n has a minimum value of C;(1 )/(b - a). The
interval [a, b] is not relevant in minimizing the product K n l5; in fact, K n l5
has the value

The minimum of Kn 15 for m points is C; (1 )/2m (19)

for the best choice (12) of m points, and this value does not depend on
la, b]. As (17) indicates, there is a family of optimal ¢; defined on different
intervals and related by a linear change of variable.

Markov's inequality gives the bound B n(x) = n2 and, therefore, to within
composition with a linear transformation, ¢n(x) = x. For this ¢n the m points
of (12) are equally spaced, and K n l5:::;; Cn(I)/2m = 2n2/2~_

Bernstein's inequality gives the bound Bn(x) = nhfl - x 2 and, to within
composition with a linear transformation, ¢n(x) = cos x. For this ¢n the
points (12) are the classical choice (1), and Kn l5:::;; Cn(1)/2m = nrc/2m.

The best bound B; gives the optimal ¢,; of Eq. (17) and the smallest value
C;(1)/2m for K n l5.

The formulas for B i and B t given in 13; 21, p. 112] allow the
computation of Ctcl) = 4.39... (compare with 2n = 6.28 ... ) and
Ct(l) = 7.02... (compare with 3n = 9.42... ). The function B; is, in general,
quite difficult to compute 13, 16, 231. However it is possible to
asymptotically estimate C;(1) and so compare the optimal ¢; with the
classical cos x by comparing C,;(1) and nn. To do this an elegant result of
Bernstein's is needed:

(20)
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Bernstein's ideas in r11, after bypassing several difficulties in his proof, apply
to give the asymptotic formula (20) with an error term which allows the
calculation of an asymptotic formula for C,;(1).

THEOREM 4. Equation (20) holds: in fact for n ~ 4,

and

C*(l) . I )
_n_= I +0 (-.'

nn . v;:;
Proof Bernstein's basic idea is to consider

(21 )

(22)

Qn = cos(nB - 6), x = cos B, o<0 B<0 n. (23)

where 6 is a temporarily unknown function of x. He was probably motivated
to consider such a function by the extraordinary usefulness of the Chebyshev
polynomials Tn(x) = cos nB, x = cos B. From the addition formula.

Qn = cos nB cos 6 + sin nB sin 6.

The trick is to choose 6 so as to have a simple form for Qn'
To motivate Bernstein's choice of 6, note that sin nB = ~~2 U

II
I(X),

Un 1 the Chebyshev polynomial of the second kind 12 L p. 71. Consider a
right triangle with acute angle 6. The radical will be removed from the term
VI - x 2 Un_I(X) sin 6 if the side opposite 6 is choosen to be of length
k~. Then, letting y be the length of the side adjacent to (5. the
denominator V? +7(1 -.'(2) of cos 6 will be simple if)' is choosen to be a
linear function of x which makes the radicand a perfect square. When this is
done Bernstein's choice is obtained:

(aX-I)6 = arc cos --- ,
a-x

sin 6 = sgn(a) J(a 2
- W=-- x 2 )/(a - x), (24)

where a is a constant with Ia I > I (and the sign of sin 6 is positive because
0<06<0 n). Then
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is a polynomial of degree n + 1 divided by a - x and so has the form

35

(26)

Pn a polynomial of degree n and A a constant.
Use the formulas Tn(x)=H(x+ Vx 2 -1t +(x-Vxz =-ltJ, [21,

p.51 and Un_I(X) = (1/2vx2~1)[(x +~=-lr - (x - y!.X2=1r1 to
compute

(27)

As a function of a> I, A attains its maximum when a2 = n2/(n 2
- 4), and

this maximum, w,hich is asymptotic to (4/e 2 )(1/n 2
), is bounded by l/n 2 for

n>4. Thus for n>4 and lal > 1,

(28)

The bound (28) shows that Pn' as given by (25) and (26), is, for large n,
close to the function Qn' and Qn is a function which resembles a Chebyshev
polynomial in the way it alternates between +1 and -I. Bernstein uses these
ideas, and generalizations, to obtain several asymptotic results [2, p. 10-26J.

Differentiate Pn :

n (SinJ) A'
P~(x)= ~ sin(nO-O) 1- ~ - ( )2'

V 1 - x 2 nV I - x 2 a - x
(29)

Let X o in (-1,1) be given and set Oo=arccos(xo). For some integer k,
nOo - n/2 - kn is in [0, n], and the range of the function Jo(a) =
arccos«axo-l)/(a-xo» on lal>1 is (0, Oo)U (00 , n). Consequently,
given f. > 0 a value a' can be choosen with Ia'l> 1 and
Isin(nOo- Jo(a'»1 >I - f.. Suppose that a' > 1. If a' is too close to I, IIPnl1
will be too large; to get around this problem, take a" = max(a', 1 + n- 3

/
2

),

where the exponent 3/2 is choosen with the final asymptotic formula (22) in
mind. If a' < 1 + n- 3I2 , we need to estimate how close sin(nOo - boCa'»~ is to
sin(nOo-bo(1 +n- 3

/
2». Since

d 1- x 2 4
-d cos(oo(a» = ( o? ,:;;; I 2 'a a -Xo - X o

4/b-al
Icos(bo(a»-cosbo(b)[':;;; 2 , (30)

l-xo

and it follows that
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Set a = 1 in (30) and multiply by 1 - cos(c5o(b)) to get

Thus sin 2 c5o(a') and sin 2 c5o(l + n 3/2) are both bounded by

(8/n3i2)(I/(I_x~)).Then

Isin(nBo- c5(a')) - sin(nBo- c5(J(l + n 12))1

=lsinnBo(cosc5o(a')-cosc5o(l +n- 32))+cosnBo(sinc5o(1 +-11 ,> ')

-- sin c5o(a'))1

4 2 ' J8
<~]'~>- ) + /

n l ·(1 - xii) n'4v I - x~ .

If I: is taken to be less than, say, (6 - 2JS )/n 34 J 1 - x~, then

6
(32)

holds for a" = max(a', 1 + n ' ;2), when a' > 1. When a' < -I, let
a" = min(a', -1 - n- 3I2 ), and argue as above to see that (32) holds. Now
set a=a" in p/!'

From (23), (26), (28), and the fact that la"l) I +- n ,12

Using (29)

IP~(xo)l) J n 2
1 -xo

1

Using (32)

IP~(xo)I)-J---'-----11~=",-X=~(1- nJl1_x~ - n3!2(t-x~) - nJ;4(J61_X~))
4

n I (' 1/4 4) 4= ,,,_ - ) 1 + 6n' +-, - ".
Jl-x~ (I-xo) , n·, nl!2(Jl-x~)'
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I n 7n 1
/
4 4

!Pn(xo)[ ~ 2 ~ •
Jl -x~ 1 -xo n 1/2(V 1 -xn3

Hence B:(xo) ~ IP~(xo)I![IPnll ~ (1- 1/n ' /2
) IP~(xo)1 and (21) follows.

To estimate g B :(t) dt, consider the point J 1 - 1/n 2 = 1 - Cn where
Markov's bound n 2 (on the derivative on 7l:n ) and Bernstein's bound
n/JI=X2 agree, and break the interval of integration into [0, 1 - Cn1 and
[1 - Cn' 1] with 1 - Cn - 1 - 1/2n 2

• Then integrating Eq. (21) shows that

.1-cn

J B:(t) dt - n7l:/2 +O(vn),
o

while

Hence

If B:(t)dt=nn/2+0(Jn)
o

and (22) follows.
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